

Poster Index

Poster Section No.	Poster Board No.	Poster Theme
1	P01	10. The Future of Proteomics
1	P02	03. Omics at Single Cell Resolution
1	P03	12. Visualizing the Cell
1	P04	01. Brain Rewiring in Neurological Disorders
1	P05	05. Proteome-wide Structural Biology
2	P06	02. Combating COVID-19
2	P07	04. Precision Pathology: Proteomics for Patients
3	P08	11. Translating Proteomics into the Clinic
3	P09	08. Proteomics-guided Therapeutics
4	P10	07. Proteomics-driven Precision Medicine
5	P11	06. Proteomics Data Science and AI
6	P12.A	09. Technological Advancements in Proteomics - Data Processing / informatics
6	P12.B	09. Technological Advancements in Proteomics - Product Development
7	P12.C	09. Technological Advancements in Proteomics - Methodology
8	P13	13. Other
8	C.P	14. Corporate Posters

HUPO CoNNECT 2021 Poster List

*HUPO ReCONNECT 2021 will not be able to ensure poster presenter's availability indicated in this list.

Poster Board No.	Poster Theme	Poster Section No.	Poster Title	-	Presenter Last Name	Presenter Available at 16:00 - 17:00 UTC, Tuesday, November 16, 2021	Presenter Available at 04:30 - 05:30 UTC, Thursday, November 18, 2021
P01.01	10. The Future of Proteomics	1	Methylproteome and Phosphoproteome Crosstalk in the Maintenance and Differentiation of Glioma Cancer Stem Cells	Byron	Baron	Yes	No
P01.02	10. The Future of Proteomics	1	Cellular Protein Perturbations Identify Toxicity Pathways Associated with ZnO Nanoform Exposures	Premkumari	Kumarathasan	Νο	Yes
P01.03	10. The Future of Proteomics	1	Future Perspectives and Strategies for Data-Independent Acquisition on Orbitrap MS Instruments	Yansheng	Liu	Νο	Yes
P01.04	10. The Future of Proteomics	1	Progress Identifying and Analyzing the Human Proteome: 2021 Metrics from the HUPO Human Proteome Project	Gilbert S.	Omenn	Yes	No
P01.05	10. The Future of Proteomics	1	A TMTpro 18plex Proteomics Standard for Assessing Protein Measurement Accuracy and Precision	Bhavin	Patel	Yes	Yes
P02.01	03. Omics at Single Cell Resolution	1	Evaluation of Long Nanoflow Columns with Core-Shell Based Chromatographic Phases in Data Dependent Acquisition Workflows	Alexandra	Antonoplis	Yes	Yes
P02.02	03. Omics at Single Cell Resolution	1	Maximizing Sensitivity Gains with Ultra-low Nano-Flow LCMS Analysis Enabled by Next- Generation Low-Flow UHPLC System	Alexander	Boychenko	Yes	Yes

P02.04	03. Omics at Single Cell Resolution	1	Real-Time Search Assisted Acquisition on a Tribrid Mass Spectrometer Improves Coverage of Multiplexed Single-Cell Proteomics	Benjamin	Furtwängler	Yes	Νο
P02.05	03. Omics at Single Cell Resolution	1	A Highly Efficient and Automated Workflow for Label-Free and Multiplexed Single Cell Proteomics	David	Hartlmayr	Yes	Yes
P02.06	03. Omics at Single Cell Resolution	1	Digital Microfluidics for Proteomics Analysis of Few or Single Mammalian Cells	Jan	Leipert	Yes	No
	03. Omics at Single Cell Resolution	1	Streamlined Single-Cell Proteomics by the All-in-One Chip and Data- Independent Acquisition Mass Spectrometry	Ū	Tu	No	Yes
P02.08	03. Omics at Single Cell Resolution	1	Comparison of Epithelial and Stromal Proteomes from Colorectal Adenoma to Carcinoma	Keqiang	Yan	No	Yes
P03.01	12. Visualizing the Cell	1	Defining Mechanisms Underlying Virus Regulation of Mitochondrial Bioenergetics During Infection	Cora	Betsinger	Yes	No
P03.02	12. Visualizing the Cell	1	Cell-Surface Proteomics: Novel Methodology for Identifying Cell- Surface Proteins of Toxic Dinoflagellates	Kenrick Kai- yuen	Chan	No	Yes
P03.03	12. Visualizing the Cell	1	The Human Fallopian Tube Proteome	Andreas	Digre	Yes	No
P03.04	12. Visualizing the Cell	1	Identification of Cell Type-Specific Endometrial Markers through Integration of Single-Cell Transcriptomics and Spatial Proteomics	Åsa	Edvinsson	Yes	Νο
P03.06	12. Visualizing the Cell	1	System Wide Profiling of Protein Interaction Dynamics Links Host Innate Immunity and DNA Damage Responses	Joshua	Justice	Yes	Yes

P03.07	12. Visualizing the Cell	1	Spatial Proteomics Analysis of Ovaries from Women in Reproductive Age	Loren	Méar	Yes	Νο
P03.08	12. Visualizing the Cell	1	Differential Regulation of Promyelocytic Leukemia-Nuclear Body (PML-NB) Proteins during Oncogene Induced Senescence	Rodrigo	Mohallem Ferreira	Yes	No
P03.09	12. Visualizing the Cell	1	Combining SDS with Subcritical for Continuous Flowthrough Extraction of Proteins from Food Samples.	Hammam	Said	Yes	No
P03.10	12. Visualizing the Cell	1	Impacts of Intracellular-Advanced Glycation End Products in Pancreatic Ductal Epithelial Cells	Lakmini	Senavirathna	No	No
P03.11	12. Visualizing the Cell	1	Streamlined Use of Protein Structures and Virtual Reality to Analyse Variants	Neblina	Sikta	Yes	Yes
P04.01	01. Brain Rewiring in Neurological Disorders	1	Ghost Proteome Revealed Involved in Functional Regulator of Glioma Using Crosslink Mass Spectrometry		Cardon	Yes	No
P04.02	01. Brain Rewiring in Neurological Disorders	1	Proteomic Investigation of Stress- Induced Neurological Changes in Brain Regions of an Alzheimer's Disease Transgenic Mouse Model	Amalie	Clement	Yes	Yes
P04.03	01. Brain Rewiring in Neurological Disorders	1	Deep Proteomic Profiling of Alzheimer's Disease CSF for Unbiased Biomarker Discovery and Subject Stratification	Yuehan	Feng	Yes	No
	01. Brain Rewiring in Neurological Disorders	1	Dynamics of Huntingtin Protein Interactions in the Striatum Identifies Candidate Modifiers of Huntington's Disease	Todd	Greco	Yes	No
P04.05	01. Brain Rewiring in Neurological Disorders	1	Brain Glycoproteomic Network Alterations in Alzheimer's Disease	Lian	Li	Yes	Νο

P04.06	01. Brain Rewiring in Neurological Disorders	1	Omics Insights into Gender Differences in Alzheimer Disease Subjects	Elisa	Maffioli	Yes	Yes
P04.07	01. Brain Rewiring in Neurological Disorders	1	Identification of Proteins Altered in Alzheimer's Disease by Mass Spectrometry That Could Be Key for the Understanding of the Disease	Ana	Montero Calle	Yes	No
P04.08	01. Brain Rewiring in Neurological Disorders	1	Proteomic Analysis of Three Brain Regions Isolated from Patients with Mesial Temporal Lobe Epilepsy Reveals Molecular Alterations beyond the Hippocampus	Amanda	Morato Do Canto	Yes	Νο
P04.09	01. Brain Rewiring in Neurological Disorders	1	Differential Proteomic Analysis of Astrocytes and Astrocytes-Derived Extracellular Vesicles from Control and Rai Knockout Mice: Insights into Neuroprotective Mechanisms	Enxhi	Shaba	Yes	No
P04.10	01. Brain Rewiring in Neurological Disorders	1	Assessment of IsoAsp7 Amyloid- beta Peptides as a Perspective Diagnostic Target of AD Progression by Proteomic MS Based Approaches	Polina	Strelnikova	Yes	Νο
P04.11	01. Brain Rewiring in Neurological Disorders	1	Proteomic Profiling Provides New Insights into the Role of Neuromelanin Granules in Neurodegenerative Processes	Maximilian	Wulf	Yes	No
P04.12	01. Brain Rewiring in Neurological Disorders	1	Mitochondrial, Cell Cycle Control and Neuritogenesis Alterations in an IPSC-Based Neurodevelopmental Model for Schizophrenia	Giuliana	Zuccoli	Yes	Yes
P05.02	05. Proteome-wide Structural Biology	1	A Survey of the Cancer Conformational Landscape Establishes Novel Anti-Cancer Drug Targets	Tom Casimir	Bamberger	Νο	No

P05.03	05. Proteome-wide Structural Biology	1	Proteomics and Large-Scale, Comparative Cross-Linking Mass Spectrometry Reveal Novel Roles for Ribosome Histidine Methylation	Tara	Bartolec	No	Yes
P05.04	05. Proteome-wide Structural Biology	1	Assessing Therapeutic Diet- Induced Succinylome Remodeling in Injured Kidney and Liver using Library-Free Data-Independent Acquisition	Joanna	Bons	Yes	Yes
P05.05	05. Proteome-wide Structural Biology	1	Interactome Analyses and HDX-MS Reveal Profound Proteasome Structural and Functional Rearrangements throughout Mammalian Spermatogenesis	Dušan	Živković	Yes	Yes
P05.06	05. Proteome-wide Structural Biology	1	A Structural Analysis of Heated Ovalbumin by Crosslink Proteomics	Mehdi	Cherkaoui	Yes	No
P05.07	05. Proteome-wide Structural Biology	1	N-Glycoproteome from a Cancer Cell Line and Its Non-tumorigenic Cell Line Combining Fbs1-GYR N- Glycopeptide Enrichment and Trapped-Ion-Mobility-Quadrupole- Time-of-Flight	Michael	Krawitzky	Yes	No
P05.08	05. Proteome-wide Structural Biology	1	Proteomics of A-to-I Rna Editing in Mouse and Human	Ksenia	Kuznetsova	Yes	No
P05.09	05. Proteome-wide Structural Biology	1	Mapping the Functional Proteome Landscape of Escherichia Coli with Thermal Proteome Profiling	André	Mateus	Yes	No
P05.11	05. Proteome-wide Structural Biology	1	HaDeX 2.0: Web-Server and R Package for the Hydrogen- Deuterium Exchange Mass Spectrometry Experiments Data	Weronika	Puchała	Yes	No
P05.12	05. Proteome-wide Structural Biology	1	Prolonged Exposure to Traffic- Related Particulate Matter and Gaseous Pollutants Implicate Distinct Molecular Mechanisms of Lung Injury in Rats	Denise Utami	Putri	No	Yes

P06.01	02. Combating COVID- 19	2	Dysregulation of Plasma Proteome Induced by SARS-CoV-2 and MERS-CoV Infections Reveal Biomarkers for COVID-19 Patients Disease Outcomes	Ayodele	Alaiya	Yes	Yes
P06.02	02. Combating COVID- 19	2	Proteomic Analysis of the Upper Respiratory Proteins from COVID 19 Patients: A Gel Based Approach.	Stefania	Angelucci	Yes	No
P06.04	02. Combating COVID- 19	2	Targeted MS Based Multi-Omic Analysis of Blood Plasma from Hospitalized COVID-19 Patients Reveals Predictive Molecular Signatures of Survival	Vincent	Richard	Νο	Νο
P06.05	02. Combating COVID- 19	2	The secretome signature for identifying biomarkers in COVID-19 severe forms	Sandrine	Bourgoin	No	No
P06.06	02. Combating COVID- 19	2	Data-Independent Acquisition Mass Spectrometry (DIA-MS) Analysis Identifies a Neutrophil Proteomic Signature in COVID-19 Infection	Alejandro J.	Brenes	Yes	Νο
P06.07	02. Combating COVID- 19	2	Quantitative Proteome and Phosphoproteome Analysis of A549 ACE2 Cells after Infection with Sars COV2 – A Pilot Study		Corrales	No	No
P06.08	02. Combating COVID- 19	2	Glycopeptide Mapping for Comparison of CHO and HEK Cell Derived SARS-Cov-2 Spike Trimeric Protein Antigen	Caroline	Evans	Νο	No
P06.09	02. Combating COVID- 19	2	Sex differences in Autoantibodies Response to SARS-CoV-2 Infection	Justyna	Fert-Bober	Yes	No
P06.10	02. Combating COVID- 19	2	SARS-CoV-2 Infection Triggers Auto-Immune Response in ARDS	Manuel	Fuentes	No	No

P06.11	02. Combating COVID- 19	2	Utilisation of Cyclic Ion Mobility with Multiple Pass Acquisition for the Analysis of Glycopeptides and Glycoforms Associated with SARS- CoV-2	Lee	Gethings	Yes	No
P06.12	02. Combating COVID- 19	2	Longitudinal Proteomic Profiling of Dialysis Patients with COVID-19 Reveals Markers of Severity and Predictors of Death	Jack	Gisby	Yes	No
P06.13	02. Combating COVID- 19	2	Large-Scale Discovery and Exploration of Virus-Host Interaction Motifs	Eszter	Kassa	Yes	No
P06.14	02. Combating COVID- 19	2	Antibody Landscape against SARS- CoV-2 Proteome Revealed Significant Differences between Non-structural/ Accessory Proteins and Structural Proteins.	Dan Yun	Lai	Yes	No
P06.15	02. Combating COVID- 19	2	Multi-omics Characterization of COVID-19 Reveals Risk Factors for One-year Sequelae	Xiao	Liang	No	Yes
P06.19	02. Combating COVID- 19	2	Systematically Exploit the IgG Responses to SARS-CoV-2 at Amino Acid Level by AbMap	Huan	Qi	Νο	Yes
P06.20	02. Combating COVID- 19	2	A COVID-19 Knowledge Graph for Therapeutic Discovery from Semantic Integration of Literature and Databases	Karen	Ross	Yes	No
P06.22	02. Combating COVID- 19	2	Systematical Deciphering of SARS- CoV-2 Specific Humoral Immune Responses		Тао	No	Yes
P07.01	04. Precision Pathology: Proteomics for Patients	2	Saliva Protein Signatures of Smokers Enrolled in Lung Cancer Screening for Early Diagnosis and Clinical Management.	Stefania	Angelucci	Yes	No

	04. Precision Pathology: Proteomics for Patients	2	Connecting Molecular Pathology and Precision Oncology: Development and Validation of a Quantitative Immuno-MRB Assay for The PD-1/PD-L1 Axis	Vincent	Lacasse	No	No
P07.03	04. Precision Pathology: Proteomics for Patients	2	Extracellular Vesicle Protein Biomarkers of Cardiac AL Amyloidosis	Sandrine	Bourgoin	No	No
P07.05	04. Precision Pathology: Proteomics for Patients	2	Phospho-Proteome Analysis of Cerebrospinal Fluid Extracellular Vesicles in Primary Central Nervous System Lymphoma	Yuanyuan	Deng	No	Yes
P07.06	04. Precision Pathology: Proteomics for Patients	2	Mapping Isoform Abundance and Interactome of the Endogenous TMPRSS2-ERG Fusion Protein in Prostate Cancer	Andrei	Drabovich	Yes	No
P07.08	04. Precision Pathology: Proteomics for Patients	2	Proteomic Profiling of Ankylosing Spondylitis Patients Serum Reveals Biomarkers for Therapeutic Response Prediction and Associated Mechanistic Insights	Ana	Fernandes	Yes	No
P07.11	04. Precision Pathology: Proteomics for Patients	2	Cancer-Testis Antigen and Immune Profiling in Non-Small Cell Lung Cancer by Transcriptomics and Antibody-Based Proteomics	Feria	Hikmet Noraddin	Yes	No
P07.12	04. Precision Pathology: Proteomics for Patients	2	Cytokines and Chemokines Analysis of Malignant Pleural Effusions	Xiaomin	Hu	No	Yes
P07.13	04. Precision Pathology: Proteomics for Patients	2	Comprehensive Serum Proteome Analysis for Signatures Development in High-Grade Serous Ovarian Cancer	Un-Beom	Kang	No	Yes
P07.14	04. Precision Pathology: Proteomics for Patients	2	Diagnostic Value of Multiple Serum Protein Marker in Breast Cancer Based on Proteomics Technique	Yumi	Kim	No	Yes

P07.15	04. Precision Pathology: Proteomics for Patients	2	The Effect of Storage Time and Temperature on MS Analysis of FFPE Tissue Sections	Jennifer	Koh	Νο	Yes
P07.16	04. Precision Pathology: Proteomics for Patients	2	Identification of Key Protein Markers of Colorectal Cancer for the Development of the Disease by TMT-Quantitative Proteomics	Ana	Montero Calle	Yes	No
P07.17	04. Precision Pathology: Proteomics for Patients	2	Automated Proteomics Sample Preparation of Extracellular Vesicles from Human Plasma and Serum	Satoshi	Muraoka	No	Yes
P07.19	04. Precision Pathology: Proteomics for Patients	2	Proteomic Profiles of Zika Virus- Infected Placentas Bearing Foetuses with Microcephaly	Mauricio	Quiñones-Vega	Yes	No
P07.20	04. Precision Pathology: Proteomics for Patients	2	Discovery of Prostate Cancer Biomarkers by Immunoaffinity Proteomics.	Yasmine	Rais	Yes	Yes
P07.21	04. Precision Pathology: Proteomics for Patients	2	A Multi-Omics LC-MS Approach for Rational Selection of Neo-Antigens and Unbiased Detection of Corresponding Neo-Epitopes from Low Number of Cells	Mogjib	Salek	Νο	No
P07.22	04. Precision Pathology: Proteomics for Patients	2	Label-free Proteomics Profile from Spleens of Lupus-like cGVHD WT Mice Reflects a STAT-1-driven Type I IFN-signature	Jaime	Sancho	Yes	No
P07.23	04. Precision Pathology: Proteomics for Patients	2	Cardiac Sex Disparities are Established Prior to Gonad Formation	Xinlei	Sheng	Yes	No
P07.24	04. Precision Pathology: Proteomics for Patients	2	Serological Profiling of Crohn's Disease and Ulcerative Colitis Sera Reveal Microbial Antibody Markers	Mahasish	Shome	Yes	No

P07.25	04. Precision Pathology: Proteomics for Patients	2	Quantitative Proteome Profiling ties the Complement System to Amyloidosis	Christian	Treitz	Yes	No
P07.26	04. Precision Pathology: Proteomics for Patients	2	Clinical Mass Spectrometry Center Munich (CLINSPECT-M): Adding a Proteomic Component to Molecular Tumor Boards	Johanna	Tüshaus	Νο	No
P07.27	04. Precision Pathology: Proteomics for Patients	2	Peptide and Metabolite Profiling in Histological Variants of Papillary Thyroid Carcinoma	Yasemin	Ucal	Νο	No
P07.28	04. Precision Pathology: Proteomics for Patients	2	Serum Proteomic Analysis of Severe Eosinophilic Asthma Patients before and after Two New Biological Therapies	Lorenza	Vantaggiato	Yes	No
P07.29	04. Precision Pathology: Proteomics for Patients	2	Mass Spectrometry-Based Proteomic and Metabolomic Profiling of Serum Samples for Discovery and Validation of TB Diagnostic Biomarker	Ana	Varela Coelho	Yes	Νο
P07.30	04. Precision Pathology: Proteomics for Patients	2	Cell Type Deconvolution of Brain Proteomes (BrainDecon)	Theodore	Verhey	Yes	Yes
P08.01	11. Translating Proteomics into the Clinic	3	Development of a Targeted Proteomics Method for Serum IGF- I, IGF-II, IGFALS and IGFBP-1, 2, 3, 4, 5 and 6.	Jakob	Albrethsen	Yes	No
P08.03	11. Translating Proteomics into the Clinic	3	Bench-to-Bedside Alzheimer Disease's Detection by Biosensing Approaches Detecting Autoantibody Biomarkers Identified by Protein Microarrays-Based Proteomics	Rodrigo ,	Barderas	Yes	No
P08.04	11. Translating Proteomics into the Clinic	3	Precision Analysis Reveals Diagnostic Protein Biomarkers of Japanese Encephalitis Virus Infection in Cerebrospinal Fluid	Tehmina	Bharucha	Yes	No

P08.05	11. Translating Proteomics into the Clinic	3	Application of 16O/18O Labeling in Characterization of Thyroid Cancer Patient	Ing-Feng	Chang	Yes	Νο
P08.06	11. Translating Proteomics into the Clinic	3	Tumor Outflow Pulmonary Blood Derived Exosome GCC2 act as a Clinically Informative Biomarker in Patients with Surgically Resected Lung Adenocarcinoma	Byeong Hyeon	Choi	Yes	Νο
P08.07	11. Translating Proteomics into the Clinic	3	Multi-Staged Enrichment Method Capable of Quantifying Mutant Frameshift MUC1 in Urine from Patients with Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD-MUC1)	Kristen	Doucette	Yes	Νο
P08.08	11. Translating Proteomics into the Clinic	3	Identification of Procalcitonin in Septic Patients Serum by Affinity Chips and Mass Spectrometry	Josef	Dvořák	Yes	No
P08.09	11. Translating Proteomics into the Clinic	3	Proteomic Analysis of Synovial Liquid to Search for Severity Biomarkers in Osteoarthritis	Patricia	Fernandez Puente	Yes	No
P08.10	11. Translating Proteomics into the Clinic	3	An Intelligent Hybrid-Dia Data Acquisition Strategy for Cracking the Clinical Sample Complexity Challenge in Translational Proteotyping	Sandra	Goetze	No	No
P08.11	11. Translating Proteomics into the Clinic	3	Cyclic Ion Mobility-Enabled Mass Spectrometer and Application to High Throughput Plasma Proteomics	Chris	Hughes	No	No
P08.12	11. Translating Proteomics into the Clinic	3	Species-Specific Cutaneous Protein Signatures of Incision Injury and Correlation with Distinct Pain- Related Phenotypes in Humans	Christin	Kappert	No	Yes
P08.13	11. Translating Proteomics into the Clinic	3	Proteomic Signature Associated with Prognosis in HPV-Related Oropharyngeal Squamous Cell Carcinoma	Jia (Jenny)	Liu	No	Yes

P08.14	11. Translating Proteomics into the Clinic	3	Identification of Protein Biomarkers in FFPE Primary Tissues to Predict Recurrence in Endometrial Cancer	Carlos	López Gil	Yes	Νο
P08.15	11. Translating Proteomics into the Clinic	3	Protein Biomarkers in Pipelle Biopsies to Diagnose the Histological Type and Grade of Endometrial Cancer and Predict Tumor Recurrence	Elena	Martinez Garcia	Yes	No
P08.16	11. Translating Proteomics into the Clinic	3	Immunopeptidomics-Based Development of a Listeria mRNA Vaccine	Rupert	Mayer	Yes	No
P08.17	11. Translating Proteomics into the Clinic	3	Regulation of Protein Cargo in Extracellular Vesicles during Cancer Onset	Orlando	Morales-tarré	Νο	Yes
P08.19	11. Translating Proteomics into the Clinic	3	Evaluation of Melanoma Plasma Proteome Profile and the Modulation of Plasma Proteins Based on Tumor Proliferation	Natália	Pinto de Almeida	Yes	Νο
P08.20	11. Translating Proteomics into the Clinic	3	Diagnosis of Pleural Effusions Using Mass Spectrometry-Based Targeted Proteomics	Aleksandra	Robak	Yes	No
P08.21	11. Translating Proteomics into the Clinic	3	An 8-Channel Automatic Glycan Profiling System Realized by The GlycoBIST Technology	Hiroko	Shimazaki	Νο	Yes
P08.22	11. Translating Proteomics into the Clinic	3	Proteogenomics for Splicing Variation and Differential Expression: A Myotonic Dystrophy Type 1 Mouse Model Study	Elizaveta	Solovyeva	No	Yes
	11. Translating Proteomics into the Clinic	3	Discovery of Soluble Pancreatic Cancer Biomarkers Using Innovative Clinical Proteomics and Statistical Learning.	Guillaume	Tosato	Yes	Yes
P08.25	11. Translating Proteomics into the Clinic	3	Discovery of Candidate Stool Biomarker Proteins for Biliary Atresia Using Deep Proteome Analysis by Data-Independent Acquisition Mass Spectrometry	Eiichiro	Watanabe	No	Yes

P08.26	11. Translating Proteomics into the Clinic	3	Large scale, deep and unbiased plasma proteomics profiling a sub- study of a multi-cancer cohort enabling biomarker discovery	Bruce	Wilcox	Yes	No
P08.27	11. Translating Proteomics into the Clinic	3	Unbiased High-Throughput Mass Spectrometry-Based Plasma Proteomics for Detection of Early Stage Lung Cancer	Matthew	Willetts	Yes	No
P08.28	11. Translating Proteomics into the Clinic	3	Proteomic Characterization of Primary Tumors and Brain Metastases in Lung Adenocarcinoma Patients	Nicole	Woldmar	Yes	No
P08.29	11. Translating Proteomics into the Clinic	3	A Pan-Cancer Proteomic Map of 960 Human Cell Lines	Qing	Zhong	No	Yes
P08.30	11. Translating Proteomics into the Clinic	3	A Fully Automated High- Throughput, Deep-Scale Quantitative Plasma Proteomics Workflow Enables Quantitively Profile More Than 1000 Proteins Per Sample	Yu	Zhou	Yes	Νο
P08.31	11. Translating Proteomics into the Clinic	3	Accurate Quantitation of Clinically Approved Cancer Biomarkers Utilising SRM	Erin	Sykes	No	Yes
P09.01	08. Proteomics-guided Therapeutics	3	Proteomics of the Acquired Resistance to Targeted Kinase Inhibition in Pancreatic Cancer Cells	Alain	Aguilar-Valdes	Yes	No
P09.02	08. Proteomics-guided Therapeutics	3	Proteomic Characterization of two Extracellular Vesicle Subtypes Isolated from Human Glioblastoma Stem Cell Secretome by Sequential Centrifugal Ultrafiltration	Stefania	Angelucci	Yes	No

P09.04	08. Proteomics-guided Therapeutics	3	DIA-MS Identifies and Validates Transgelin as Protein Contributing to a Poor Response of Metastatic Renal Cell Carcinoma to Sunitinib Treatment	Pavla	Bouchalova	Νο	No
P09.06	08. Proteomics-guided Therapeutics	3	Efficient Profiling of Protein Degraders by Specific Functional and Target Engagement Readouts	Alexey	Chernobrovkin	Yes	Yes
P09.07	08. Proteomics-guided Therapeutics	3	Label Free Pharmacoproteomic Assays Enabled the Discovery of Cellular Pathways Involved in the Survival Of MCF-7 and K562 Cancer Cells	Cristina	Clement	Yes	Yes
P09.09	08. Proteomics-guided Therapeutics	3	Proteomic Analysis of Equine Serum Antibody Repertoire against Loxosceles Venom.	Manuela Cristina	Emiliano Ferreira	Yes	No
P09.10	08. Proteomics-guided Therapeutics	3	Discovering Substrates of PRMT5 and CDK4/6 In Human Melanoma Cells with Antibody-Based PTM Peptide Specific Enrichment Strategies.	Charles	Farnsworth	Yes	Νο
P09.11	08. Proteomics-guided Therapeutics	3	Improved Middle-down Characterization of Antibodies Using Proton Transfer Charge Reduction on a Tribrid Orbitrap Mass Spectrometer	Luca	Fornelli	Νο	No
P09.12	08. Proteomics-guided Therapeutics	3	Combatting Fungal Infections: Novel Anti-virulence Strategies and Reversing Antifungal Resistance.	Jennifer	Geddes- McAlister	Νο	Yes
P09.13	08. Proteomics-guided Therapeutics	3	Proteomic Unraveling of the Hidden Regulators of Erythropoiesis	Sudip	Ghosh	Yes	No
P09.14	08. Proteomics-guided Therapeutics	3	Effects of Salicornia-Based Cream Skin Application on a Human Experimental Model of Pain and Itch.	Rocco	Giordano	Yes	No

P09.15	08. Proteomics-guided Therapeutics	3	Transcriptional and Translational Dynamics Underlie Synergy in Endothelial Inflammation	Stijn	Groten	Yes	No
P09.16	08. Proteomics-guided Therapeutics	3	Comprehensive Biological Characterization of Novel Antitumor Nanoconjugates by Newly Synthesized Proteomes with Bioorthogonal Non-canonical Amino-Acid Tagging.	Angela-Patricia	Hernandez	Yes	No
P09.17	08. Proteomics-guided Therapeutics	3	Proteomic Basis for Understanding the Combination of Gemcitabine and Kinase Inhibitors to Kill Pancreatic Cancer Cells	Stefanie	Hoefer	Νο	No
P09.18	08. Proteomics-guided Therapeutics	3	Developing and Validating a Set of Targeted Mass Spectrometry Assays for Pan-Herpesvirus Viral Protein Detection and Monitoring of Infection Progression	Michelle	Kennedy	Yes	No
P09.19	08. Proteomics-guided Therapeutics	3	Target Identification of a Natural Compound Regulating Mitochondria-ER Interaction Using DARTS-LC-MS/MS	Minjeong	Ко	Νο	Yes
P09.20	08. Proteomics-guided Therapeutics	3	The Cell Membrane Proteome: From Cancer Hallmarks to Therapeutic Interventions	Iulia	Lazar	Yes	No
P09.21	08. Proteomics-guided Therapeutics	3	The Chemoproteomic Target Landscape of HDAC Inhibitors Highlights MBLAC2 as Common Off-Target	Severin	Lechner	Yes	No
P09.22	08. Proteomics-guided Therapeutics	3	Label-Free Dia-PASEF Compared to TMT Quantitation for Thermal Proteome Profiling / Cellular Thermal Shift Assay	Johan	Lengqvist	Yes	No
P09.23	08. Proteomics-guided Therapeutics	3	Proteomics Profiling of Systemic Effects of Bovine Colostrum Diet in Preterm Piglets - A Translational Model for Neonate Disease Pathology	Azra	Leto	Yes	No

P09.24	08. Proteomics-guided Therapeutics	3	Target Identification, Selectivity Profiling and Mechanistic Insights of a Cdk9 Inhibitor Using Complementary Proteomics Methods	Daniel	Martinez Molina	Yes	Νο
P09.25	08. Proteomics-guided Therapeutics	3	Systems-based Examination of DLK-MAPK Signaling in Human Stem Cell Derived Retinal Ganglion Cells during Cell Death	Joseph	Mertz	Yes	No
P09.27	08. Proteomics-guided Therapeutics	3	Establishment and Characterization of a Novel Cancer Stem Cell Derived from Cholangiocarcinoma by Proteomics	Orasa	Panawan	Yes	Νο
P09.28	08. Proteomics-guided Therapeutics	3	Dynamic Polygon for MHC Class I and II Immunopeptides	Francesco	Pingitore	Yes	Yes
P09.29	08. Proteomics-guided Therapeutics	3	Metalloproteomic Analysis of Brazilian Snake Venoms as Proof of Concept for the Development of a Diagnostic Kit for Snakebites	Lucilene Delazari Dos	Santos	Νο	Yes
P09.30	08. Proteomics-guided Therapeutics	3	Quantitative Proteomics Shows High Selectivity and Reveals the Mechanism-of-Action of a STAT3 Degrader	Yatao	Shi	No	Yes
P09.31	08. Proteomics-guided Therapeutics	3	Kitted Universal MAM: Automated Sample Preparation for All Stages of Biological Drugs	John	Wilson	Yes	Yes
P09.32	08. Proteomics-guided Therapeutics	3	Integrated Proteomics Revealed Acetylation-Induced PCK Isoenzyme Transition Promotes Metabolic Adaptation of Liver Cancer to Systemic Therapy	Xiaohang	Zhao	Νο	Νο
P10.01	07. Proteomics-driven Precision Medicine	4	Global Proteome Expression Study of Patient-Derived Sarcoma Cell- Lines toward Optimization of Therapeutic Strategy Using Relocated Anti-cancer Drug	Taro	Akiyama	Yes	Yes

P10.02	07. Proteomics-driven Precision Medicine	4	Al-Driven Glycoproteomics Liquid Biopsy in Nasopharyngeal Carcinoma: A Proof of Concept Study	Thin Thin	Ауе	Yes	No
P10.04	07. Proteomics-driven Precision Medicine	4	Cell Surface Phenotyping of the Human Heart Reveals Cardiomyocyte-Specific Targets and Surfaceome Dynamics of Explanted Cardiac Fibroblasts	Linda	Berg Luecke	Yes	Νο
P10.05	07. Proteomics-driven Precision Medicine	4	The Secretome Deregulations in a Rat Model of Endotoxemic Shock	Sandrine	Bourgoin	No	No
P10.06	07. Proteomics-driven Precision Medicine	4	Two Novel Serum Biomarkers Are Associated with the Serological Status of Rheumatoid Arthritis Patients: A Tool for Precision Medicine Strategies	Valentina	Calamia	Yes	Νο
P10.08	07. Proteomics-driven Precision Medicine	4	Development of a Standardized MRM Targeted Proteomics Method for Monitoring One-Carbon Metabolism Enzymes in Hepatocellular Carcinoma and Cirrhosis	Fernando	Corrales	No	No
P10.09	07. Proteomics-driven Precision Medicine	4	The Proteomic Analysis of High Grade Serous Ovarian Cancer Reveals the Role of Tumor Microenvironment in Chemoresistance.	Kruttika	Dabke	Νο	Yes
P10.10	07. Proteomics-driven Precision Medicine	4	A Quantitative Discovery Platform to Survey the Human Blood Plasma Proteome in Precision Oncology	Yuehan	Feng	Yes	No
P10.12	07. Proteomics-driven Precision Medicine	4	Functional Protein Discovery for the Early Diagnosis of Neonatal Sepsis	Julie	Hibbert	No	Yes
P10.13	07. Proteomics-driven Precision Medicine	4	Fast Library Generation Using Zeno MS/MS and Microflow Chromatography	Christie	Hunter	Yes	Yes

P10.14	07. Proteomics-driven Precision Medicine	4	Precise Quantitation of PTEN by Immuno-MRM: A Tool to Resolve the Breast Cancer Biomarker Controversy	Sahar	Ibrahim	No	No
P10.16	07. Proteomics-driven Precision Medicine	4	Development of a Parallel Reaction Monitoring Assay for the Quantification of Interferon Alpha Subtypes	Martha	Ingola	No	No
P10.17	07. Proteomics-driven Precision Medicine	4	Cancer SHooting ARrow Proteomics (cSHARP) to Target OnCo-proteogenomic Panels in a Quadrupolar Environment	Yasushi	Ishihama	Νο	Νο
P10.18	07. Proteomics-driven Precision Medicine	4	Biomarker Monitoring in Body Fluid by High Sensitivity and High Throughput FAIMS-Surequant™ Is Targeted Quantitation	Konstantinos	Kalogeropoulos	Yes	No
P10.19	07. Proteomics-driven Precision Medicine	4	Optimization of the protocol for collection and proteomic analysis of exhaled breath condensate for the lung cancer diagnostics	Anna	Kozyr	No	No
P10.20	07. Proteomics-driven Precision Medicine	4	A Multi-Faceted System for Differential Glycoprotein Analysis: Toward the "Design Drawings" of GlyCo-targets for the Highly Specific Antibody Drug Development	Atsushi	Kuno	Yes	Νο
P10.21	07. Proteomics-driven Precision Medicine	4	Kinome Analysis of CIC- Rearranged Sarcoma Using Peptide Microarray; Global Investigation of Kinases Affected by Culture Condition	Yu	Kuwata	No	Yes
P10.22	07. Proteomics-driven Precision Medicine	4	Evaluation of Humoral Immune Dysfunction in Chronic Lymphocytic Leukemia by Affinity Proteomics.	Alicia	Landeira Viñuela	No	No
P10.23	07. Proteomics-driven Precision Medicine	4	A Large-Scale Assay Library for Targeted Protein Quantification in Renal Cell Carcinoma Tissues	Petr	Lapcik	Yes	No

P10.24	07. Proteomics-driven Precision Medicine	4	Discovery and Validation of Circulating Autoantibodies Associated with the ACPA Status in Early Rheumatoid Arthritis	Lucia	Lourido	Yes	No
P10.25	07. Proteomics-driven Precision Medicine	4	Integrated Proteomic and Glycoproteomic Signatures of Protein N-Glycosylation Aberrations in Ulcerative Colitis	Cheng	Ма	Yes	No
P10.27	07. Proteomics-driven Precision Medicine	4	Global Immunopeptidomics by Differential Ion Mobility Mass Spectrometry for Identification of Patient Specific HLA-Presented Antigens Directly from Clinical Tissues	Yuriko	Minegishi	Νο	Yes
P10.29	07. Proteomics-driven Precision Medicine	4	Immunoproteomics Characterization of Ligustrum Lucidum Pollen Allergens Causing Respiratory Allergies in Polysensitized Patients	Josaphat Miguel	Montero-Vargas	Yes	No
P10.30	07. Proteomics-driven Precision Medicine	4	Autoantigenomics in Neurology: Holistic Characterization of Autoantigen Repertoires Identifies Patient Subgroups and a Novel Target of Autoantibodies in CIDP	Christian	Moritz	No	No
P10.31	07. Proteomics-driven Precision Medicine	4	The Urine Proteome/Degradome Using N-Terminomics with TMPP- Labelling on the Proteome and Peptidome Fractions	Leslie	MULLER	Yes	No
P10.32	07. Proteomics-driven Precision Medicine	4	A Multi-Faceted System for Differential Glycoprotein Analysis: Toward the Discovery of Disease- Related Glycosylation Alterations Using Tissue Crude Samples	Chiaki	Nagai-Okatani	No	Yes
P10.33	07. Proteomics-driven Precision Medicine	4	Personalised Phosphoproteomics Identifies Functional Signalling	Elise	Needham	Νο	Yes

P10.34	07. Proteomics-driven Precision Medicine	4	Mass Spectrometry-Based Proteomics of Multiple Sites Reveals Signature of Lymph Node Metastasis for Head and Neck Cancer	Adriana	Paes Leme	Νο	No
P10.35	07. Proteomics-driven Precision Medicine	4	MASTER INFORM Pro - Proteome Profiling for Personalized Oncology	Julia	Rechenberger	Yes	No
P10.37	07. Proteomics-driven Precision Medicine	4	Proteomics-Informed Two Stage Model of Resistance in Acute Myeloid Leukemia: Identification of Novel Therapeutic Targets to Inhibit Early Resistance	Karin	Rodland	Yes	No
P10.38	07. Proteomics-driven Precision Medicine	4	Differential Molecular Signatures in Synovial Membrane and Synovial Fluid from Patients with Rheumatoid Arthritis and Psoriatic Arthritis	Cristina	Ruiz-Romero	Yes	Νο
P10.39	07. Proteomics-driven Precision Medicine	4	Proteomic-Based Precision Medicine for Companion Diagnostics in Autoimmune Diseases	Jacob	Skallerup	Νο	Yes
P10.40	07. Proteomics-driven Precision Medicine	4	Aryl Hydrocarbon Receptor- Interacting Protein Regulates Tumorigenic and Metastatic Properties of Colorectal Cancer Cells Driving Liver Metastasis	Guillermo	Solís- Fernández	Νο	No
P10.41	07. Proteomics-driven Precision Medicine	4	Proteomic Analysis Identifies Unique Signatures in Small Cell Lung Cancer Subtypes.	Beáta	Szeitz	Yes	No
P10.42	07. Proteomics-driven Precision Medicine	4	Precision Proteomics in Allergy: Pecan Pollen Allergens	Luis M.	Teran	Yes	Yes
P10.43	07. Proteomics-driven Precision Medicine	4	Novel Candidate Drugs for Malignant Peripheral Nerve Sheath Tumor Revealed by Mass Spectrometry and Drug Screening Using Patient-Derived Cell Lines	Ryuto	Tsuchiya	Νο	Yes

P10.44	07. Proteomics-driven Precision Medicine	4	Patient-Derived Sarcoma Model; Pivotal Research Resource for Proteomics	Yuki	Yoshimatsu	Yes	Νο
P10.45	07. Proteomics-driven Precision Medicine	4	Urinary Proteins RAD23B and CORO1C Associated with Colorectal Cancer Progression and Metastasis	Xiaohang	Zhao	Νο	No
P10.46	07. Proteomics-driven Precision Medicine	4	Development of a Multiplexed Protein Panel Using a Targeted- Proteomics Approach for the Study of Resistance to CDK4/6-Inhibitors in Breast Cancer	Marta	Zurawska	Yes	No
P11.01	06. Proteomics Data Science and Al	5	Proteograph Analysis Suite: A Cloud-Scalable Software Suite for Proteogenomics Data Analysis and Visualization.	Harsharn	Auluck	Yes	No
P11.02	06. Proteomics Data Science and Al	5	HPPInspector: Automated Community-Scale Validation of Novel Protein Discoveries	Benjamin	Pullman	Yes	No
P11.03	06. Proteomics Data Science and Al	5	Proteome-Wide Analysis of Turnover Rates with TurnoveR and Skyline	Nathan	Basisty	Yes	No
P11.04	06. Proteomics Data Science and Al	5	DeepLC Can Predict Retention Times for Peptides That Carry As- Yet Unseen Modifications	Robbin	Bouwmeester	Yes	No
P11.05	06. Proteomics Data Science and Al	5	The Development of New Tools to Facilitate Proteomics Data Analysis; the UniProt Proteins API.	Emily	Bowler-Barnett	Yes	No
P11.06	06. Proteomics Data Science and AI	5	Comprehensive Cancer Tissue- Specific Neural Network Spectral Reference Library (SRL) Generation Using DIA-MS Acquisition	Daniel	Bucio Noble	No	Yes
P11.07	06. Proteomics Data Science and Al	5	Tissue Type Prediction Reveals Protein Expression Patterns	Tine	Claeys	Yes	No
P11.08	06. Proteomics Data Science and Al	5	Leveraging Large-Scale Comparative Proteomics across the Tree of Life to Improve Human Disease Models	Rachael	Сох	Yes	No

P11.09	06. Proteomics Data Science and Al	5	Power of prediction: MS ² PIP and DeepLC-based rescoring dramatically boosts immunopeptide identification	Arthur	Declercq	Yes	No
P11.11	06. Proteomics Data Science and Al	5	Novel Statistics Tools for Reliable Proteome-Wide Quantification of Post-translational Modifications	Nina	Demeulemeest er	Yes	No
P11.12	06. Proteomics Data Science and Al	5	ADPR Classification using DPA Clustering Algorithm	Maria	d'Errico	No	No
P11.13	06. Proteomics Data Science and Al	5	A Transformer for Prediction of MS2 Spectrum Intensities	Markus	Ekvall	Yes	No
P11.15	06. Proteomics Data Science and Al	5	Extending INFERYS' Capabilities to CID and TMT Data for (Non-)Tryptic Peptides	Siegfried	Gessulat	Yes	Yes
P11.16	06. Proteomics Data Science and Al	5	InfineQ: Real-time Cloud-Based DIA Data Processing For High- Throughput Proteomics	Arnoud	Groen	No	No
P11.17	06. Proteomics Data Science and Al	5	MAGPIE: A Machine Learning Approach for Deciphering Protein- Protein Interactions in Human Plasma	Emily	Hashimoto-Roth	Yes	No
P11.18	06. Proteomics Data Science and Al	5	PepGM: A Probabilistic Graphical Model for Taxonomic Profiling of Viral Proteomes and Metaproteomic Samples	Tanja	Holstein	Yes	No
P11.19	06. Proteomics Data Science and Al	5	Deep Plasma Proteomics at Scale: a Machine Learning Enhanced Multi-Nanoparticle Approach to Improve the Depth of Plasma Proteome Coverage	Daniel	Hornburg	Yes	Νο
-	06. Proteomics Data Science and Al	5	Evolution of Protein Functional Annotation: Text Mining Study	Ekaterina	Ilgisonis	Yes	No
P11.24	06. Proteomics Data Science and Al	5	Introducing a Cloud Scalable Omics Data Analysis Pipeline with a Serverless Task Infrastructure for Large Scale Proteomics Studies	Hugo	Kitano	Yes	Νο

P11.25	06. Proteomics Data Science and Al	5	Increasing the Sensitivity of Neoantigen Identification in Mass Spectrometry-Based Immunopeptidomics Using Supervised Learning with Enhanced Peptide Features	Kevin	Kovalchik	Yes	No
P11.26	06. Proteomics Data Science and Al	5	Interactive Statistical and Functional Analysis of Phosphoproteomics Data with Phosphomatics	Michael	Leeming	No	Yes
P11.27	06. Proteomics Data Science and Al	5	A Computational Tool for Comprehensive Selection of Potential Cancer Protein Biomarkers in Blood Plasma	Huiyan	Li	No	Yes
P11.28	06. Proteomics Data Science and Al	5	Implementing Comet Search Engine into Proteome Discoverer to Improve TMT Real-Time Search Data Processing	Yang	Liu	No	No
P11.29	06. Proteomics Data Science and Al	5	Al Assisted Protein Identification and de Novo Sequencing in the Cloud	Bin	Ма	Yes	No
P11.30	06. Proteomics Data Science and Al	5	IcmsWorld: High-Performance 3D Visualization Software for Mass Spectrometry	Antony	McCabe	Yes	No
P11.31	06. Proteomics Data Science and Al	5	MASH-Native: A Universal and Comprehensive Software for Native Mass Spectrometry and Top-down Proteomics	Sean	McIlwain	Yes	Yes
P11.33	06. Proteomics Data Science and Al	5	Deep Plasma Protein Characterization Enabled by Mass Spectrometry (MS) Data Acquisition and Machine Learning (ML) Methods.	lman	Mohtashemi	Yes	No
P11.34	06. Proteomics Data Science and Al	5	Improving the Sensitivity and Specificity of TMT-Labeled Phosphopeptide Identification Using Deep Learning	Seungjin	Na	No	No

P11.35	06. Proteomics Data Science and Al	5	"Oncoprogx": Innovative Proteogenomic Software Generating Sample-Specific Database for Mass Spectrometric Protein Identification	Rei	Noguchi	Νο	Yes
P11.36	06. Proteomics Data Science and Al	5	Expanding the Boundaries of Proteomics Data Integration and Visualization in Uniprot.	Sandra	Orchard	Yes	No
P11.37	06. Proteomics Data Science and Al	5	Combination of Library Search and Database Search on DIA Data	Robin	Park	Yes	Yes
P11.38	06. Proteomics Data Science and Al	5	Application of TIMScore to De Novo Search Engine, DeepNovo in PaSER	Robin	Park	Yes	Yes
P11.39	06. Proteomics Data Science and Al	5	The Selection of Knockout Targets: HepG2 Multi-omics Profiling and Meta-Analysis	Elena	Ponomarenko	No	Yes
P11.40	06. Proteomics Data Science and Al	5	PTMeXchange: Reanalysis of Post- translational Modifications and Independent Estimation of False Localisation Rates	Kerry	Ramsbottom	Yes	No
P11.41	06. Proteomics Data Science and Al	5	RHybridFinder: An R Package to Process Immunopeptidomic Data for Putative Hybrid Peptide Discovery	Frederic	Saab	Yes	Yes
P11.42	06. Proteomics Data Science and Al	5	SAPID-MSI: Spatially-Aware Protein Identification Algorithm for Mass Spectrometry Imaging	Soroush	Shahryari Fard	Yes	No
P11.43	06. Proteomics Data Science and Al	5	Deep Learning Algorithm for CID Peptide Fragmentation Prediction	Hyeonseok	Shin	No	Yes
P11.44	06. Proteomics Data Science and Al	5	MetaProClust-MS1: An MS1 Profiling Approach to Metaproteome Screening	Caitlin	Simopoulos	Yes	No
P11.45	06. Proteomics Data Science and Al	5	TIMS Viz for Mobility Offset Mass Aligned Interrogation of Complex Samples	Philipp	Strohmidel	Yes	No
P11.47	06. Proteomics Data Science and Al	5	Glycan de Novo Sequencing by Deep Learning	Ngoc Hieu	Tran	No	Yes

P11.48	06. Proteomics Data Science and Al	5	MS2ReScore: Using Predicted Fragment Ion Intensities and Retention Times to Increase Identification Rates in Metaproteomics without Impacting Sensitivity	Tim	Van Den Bossche	Yes	Yes
P11.49	06. Proteomics Data Science and AI	5	Identification of Murine Protein Homologs in the Chinese Hamster Proteome via Sequence Alignment and Machine Learning	Junmin	Wang	Yes	Νο
P11.50	06. Proteomics Data Science and Al	5	Enhancement of MaCPepDB (Mass Centric Peptide Database)		Winkelhardt	Yes	No
P11.51	06. Proteomics Data Science and Al	5	The R-Package Prolfqua for Proteomics Label-Free Quantification Data Analysis	Witold	Wolski	Yes	No
P11.52	06. Proteomics Data Science and AI	5	CHIMERYS: An AI-Driven Leap Forward in Peptide Identification	Daniel	Zolg	No	Yes
P12.A01	09. Technological Advancements in Proteomics - Data Processing / informatics	6	The HUPO-PSI Universal Spectrum Identifier (USI) For Mass Spectra	Alexandra	Antonoplis	Yes	Yes
P12.A02	09. Technological Advancements in Proteomics - Data Processing / informatics	6	ProtView: A Software Tool for Protease Selection to Optimise Shotgun Proteomics and Investigate Transcript Activities	Sophia	Puliasis	Yes	No
	09. Technological Advancements in Proteomics - Data Processing / informatics	6	PaSER Ex: Real Time Exclusion List	Patrick	Garrett	Yes	Yes
P12.A05	09. Technological Advancements in Proteomics - Data Processing / informatics	6	Using Multilayer Heterogeneous Networks to Infer Functions of Phosphorylated Sites	Joanne	Watson	Yes	No

P12.A06	09. Technological Advancements in Proteomics - Data Processing / informatics	6	Real-Time Selection of Glycopeptide Dissociation Methods by Matching Oxonium Patterns Using a Real-Time Library Search	Nicholas	Riley	Yes	No
P12.A07	09. Technological Advancements in Proteomics - Data Processing / informatics	6	Unipept Desktop: Getting Unipept Ready for Proteogenomics	Pieter	Verschaffelt	Yes	No
P12.A09	09. Technological Advancements in Proteomics - Data Processing / informatics	6	Alignment Strategies of Dia Data and Their Effect on the Quantification Table	Shubham	Gupta	Yes	No
P12.A10	09. Technological Advancements in Proteomics - Data Processing / informatics	6	Real-Time Modification-Tolerant Matching of MS/MS Spectra at the Repository Scale	Benjamin	Pullman	Yes	No
P12.A11	09. Technological Advancements in Proteomics - Data Processing / informatics	6	PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors	He	Zhu	Yes	No
P12.A12	09. Technological Advancements in Proteomics - Data Processing / informatics	6	Mass Dynamics 1.0: Growing a Streamlined, Web-Based Environment for Analyzing, Sharing and Integrating Proteomics Data.	Joseph	Bloom	Yes	Yes
P12.B01	09. Technological Advancements in Proteomics - Product Development	6	MS ³ Analysis of Glycopeptides Using MALDImini™-1 Compact MALDI Digital Ion Trap Mass Spectrometer	Andreas	Baumeister	Yes	Yes
P12.B02	09. Technological Advancements in Proteomics - Product Development	6	High Throughput Single-Shot Proteomics on the Timstof Pro 2	Verena	Tellstroem	No	No

P12.B03	09. Technological Advancements in Proteomics - Product Development	6	Doubly Functionalized Magnetic Microspheres with Immobilized Trypsin and LysC Enabling Fast, Easy and Automatable LC-MS Sample Preparation	Jasmin	Johansson	Νο	No
P12.B05	09. Technological Advancements in Proteomics - Product Development	6	Deep Metaproteome Analysis using a Vanquish Neo UHPLC System Coupled to an Orbitrap Eclipse Tribrid with FAIMS Pro Interface	Amirmansoor	Hakimi	Νο	No
P12.B06	09. Technological Advancements in Proteomics - Product Development	6	Rethink Tissue Lysis: High- Throughput Tissue Lysis Workflow Using the 'BeatBox' Platform for in- Depth Proteomic Coverage	Berit	Mang	Yes	No
P12.B08	09. Technological Advancements in Proteomics - Product Development	6	Evaluation of Dia-PASEF Using Library and Library Free Approaches for Different Gradients	Diego	Assis	No	No
P12.B09	09. Technological Advancements in Proteomics - Product Development	6	The Impact of a Plug and Play Microflow Ionization Source on High Throughput Proteomics	Dylan	Xavier	Νο	Yes
P12.B10	09. Technological Advancements in Proteomics - Product Development	6	Exploring Human Brain Proteome with Alzheimer's Disease (AD) With MALDI Imaging Mass Spectrometry in Combination with Shotgun Proteomics		Toyama	Νο	Yes
P12.B11	09. Technological Advancements in Proteomics - Product Development	6	Absolute Quantification of 500 Human Plasma Proteins in Colon Cancer Plasma Samples by Prm- PASEF	Pierre-Olivier	Schmit	No	No
P12.B12	09. Technological Advancements in Proteomics - Product Development	6	Comparative Evaluation of a New Processing Pipeline for Pasef Label- Free Quantification Analysis.	Aurelie	Meme	Yes	Yes

	09. Technological Advancements in Proteomics - Product Development	6	The Next-Generation All-in-One Nano-, Capillary- And Micro-Flow LC System Is Paving the Way for Robust, Fast, and Deep LC-MS Proteomics	Alexander	Boychenko	Yes	Yes
	09. Technological Advancements in Proteomics - Product Development	6	Multicentric Evaluation of High- Throughput Low-Flow LC-MS Proteomic Profiling of Cell Lysates and Biofluids	Alexander	Boychenko	Yes	Yes
	09. Technological Advancements in Proteomics - Product Development	6	Impact of Improved MS/MS Duty Cycle On Protein Identification Efficiency using Data Independent Acquisition On a New QTOF Platform	lhor	Batruch	Yes	No
	09. Technological Advancements in Proteomics - Product Development	6	Benchmark of Micro-flow Chromatograph for Robust Proteomics Analysis	Yang	Liu	No	No
	09. Technological Advancements in Proteomics - Product Development	6	Rapid and Reproducible Phosphoenrichment Using Fe-NTA Magnetic Beads	Bhavin	Patel	Yes	Yes
P12.B19	09. Technological Advancements in Proteomics - Product Development	6	SureQuant Targeted Mass Spectrometry Standards and Assay Panel for Quantitative Analysis of Phosphorylated Proteins from Multiple Signaling Pathways	Bhavin	Patel	Yes	Yes
	09. Technological Advancements in Proteomics - Product Development	6	Engineered Multi-Nanoparticle Panels Enable Unmatched Depth and Sensitivity in Plasma Proteomics in Combination with Trapped Ion Mobility Mass Spectrometry	Moaraj	Hasan	Yes	No
	09. Technological Advancements in Proteomics - Product Development	6	Low Abundance Protein Detection after Acetone Precipitation Using the ProTrap XG	Victoria Ann	Miller	Yes	No

P12.B23	09. Technological Advancements in Proteomics - Product Development	6	Combining the Data-Driven and Hypothesis-Driven Approaches in One Go via a Novel Intelligent Data Acquisition Hybrid-Dia Mass Spectrometry Strategy	Sean	McIlwain	Yes	No
P12.B24	09. Technological Advancements in Proteomics - Product Development	6	Reproducibility and Sensitivity of a Targeted Quantitative Assay for 804 Peptides in Plasma Using a 20 Min Microflow Gradient	Christie	Hunter	Yes	Yes
P12.B25	09. Technological Advancements in Proteomics - Product Development	6	Increased Protein and Peptide Identifications using Zeno MS/MS in Data Dependent Acquisition Workflows	Alexandra	Antonoplis	Yes	Yes
P12.B26	09. Technological Advancements in Proteomics - Product Development	6	S-Trap Turbo: From Sample Prep to Analysis in Record Time	John	Wilson	Yes	Yes
P12.B27	09. Technological Advancements in Proteomics - Product Development	6	Sample Preparation to Match Analytical Advances: 384-Well S- Trap Plates	John	Wilson	Yes	Yes
P12.B28	09. Technological Advancements in Proteomics - Product Development	6	BCA-No-More: Seamless, High Throughput Protein Quantification Directly on S-Trap Plates	John	Wilson	Yes	Yes
P12.C01	09. Technological Advancements in Proteomics - Methodology	7	Can the Ultra-fast Proteomics Be Quantitative: Benchmarking directMS1 Method against Label- Based and Label-Free Approaches	Julia	Bubis	Yes	No
P12.C02	09. Technological Advancements in Proteomics - Methodology	7	SMART-CARE: A Systems Medicine Approach to Stratification of Cancer Recurrence Facilitated by Automated MS-Based Clinical Proteomics	Torsten	Müller	Yes	Νο

P12.C03	09. Technological Advancements in Proteomics - Methodology	7	Systematic Identification of ALK Substrates by Phosphoproteome and Interactome Analysis	Jun	Adachi	No	Yes
P12.C05	09. Technological Advancements in Proteomics - Methodology	7	Targeted UHPLC-MS/MS Proteomic Analysis Using QPrEST and Single Point Calibration with Application to the Determination of Apolipoproteins in Human Plasma.	Hatem	Elmongy	Yes	No
P12.C07	09. Technological Advancements in Proteomics - Methodology	7	Analyzing Protein Fluorosequencing Data, a New Technology for Single Molecule Proteomics	Matthew	Smith	Yes	Yes
P12.C09	09. Technological Advancements in Proteomics - Methodology	7	New Method to Construct a Reference Amino Acid Sequence Database for Metaproteome Analysis	Nobuaki	Miura	Νο	Yes
P12.C10	09. Technological Advancements in Proteomics - Methodology	7	Label-Free Quantification of Oxidized Peptides in eHAP Cell Lines via a High-Throughput Dia- PASEF Workflow	Romano	Hebeler	Yes	No
P12.C11	09. Technological Advancements in Proteomics - Methodology	7	Data-Independent Acquisition Method for Ubiquitinome Analysis Reveals Regulation of Circadian Biology	Fynn	Hansen	Yes	No
P12.C12	09. Technological Advancements in Proteomics - Methodology	7	The Number of «Missing» Proteins Is a Function of the Analytical Sensitivity of Proteomic Analysis	Ekaterina	Ilgisonis	Yes	No
P12.C13	09. Technological Advancements in Proteomics - Methodology	7	Streamlined SDS-based Workflows in the ProTrap XG for Top-down or Bottom-up Proteomics	Alan	Doucette	No	No
P12.C14	09. Technological Advancements in Proteomics - Methodology	7	Assessment of Bacterial Metaproteome Using Ultra-fast MS/MS-Free Proteomics	Elizaveta	Kazakova	Yes	No

	09. Technological Advancements in Proteomics - Methodology	7	Number of Detected Proteins as the Function of the Sensitivity of Proteomic Technology in Human Liver Cells	Nikita	Vavilov	Yes	No
	09. Technological Advancements in Proteomics - Methodology	7	A Comprehensive Quality Control Pipeline for Clinical Biomarker Discovery	Natasha	Lucas	No	Yes
P12.C18	09. Technological Advancements in Proteomics - Methodology	7	Comparison of Sample Preparation Methods and Instrumental Platforms for Proteomic Analysis of Murine Brain Tissues and Isolated Brain Cell Types	Jeewan Babu	Rijal	Yes	Νο
	09. Technological Advancements in Proteomics - Methodology	7	PEPPI-MS Workflow for Bottom-Up Proteomics	Nobuaki	Takemori	No	Yes
	09. Technological Advancements in Proteomics - Methodology	7	Specific Cysteine Sulfenic Acid Biomarker Screening by Coupling Mass Spectrometry with Laser Induced Dissociation Applied to Alzheimer's Disease and COVID- 19.	Jean-valery	Guillaubez	Yes	Νο
	09. Technological Advancements in Proteomics - Methodology	7	Automated High Throughput DIA- MS Workflow for Plasma Proteomics with Novel Quality Control Procedure	Annie	Moradian	Yes	Yes
P12.C22	09. Technological Advancements in Proteomics - Methodology	7	Critical Assessment of Salt lons on the Recovery of Proteins through Solvent-Based Precipitation	Ziheng	Dang	Yes	No
	09. Technological Advancements in Proteomics - Methodology	7	Enhanced Nano-Bio Interaction Enables Deep Plasma Proteomics at Scale, with Enhanced Precision, and Depths of Coverage.	Shadi	Ferdosi	Yes	Νο

P12.C25	09. Technological Advancements in Proteomics - Methodology	7	Neoantigens Identification and Personalized Vaccines Development from Immunopeptidomics Characterization	Pablo	Juanes-Velasco	Yes	Νο
P12.C27	09. Technological Advancements in Proteomics - Methodology	7	The Isotopic AC-IP Tag Enables Multiplexed Proteome Quantification in Data-Independent Acquisition Mode	Xiaobo	Tian	Yes	No
P12.C28	09. Technological Advancements in Proteomics - Methodology	7	FLASHIda: Intelligent Data Acquisition for Top-down Proteomics That Doubles Proteoform Identification Count	Kyowon	Jeong	Yes	Yes
	09. Technological Advancements in Proteomics - Methodology	7	Quantitative Assessment of Enzyme Activity in the Presence of Surfactants: Implications for Bottom- Up Proteomics	Jessica	Nickerson	Yes	No
	09. Technological Advancements in Proteomics - Methodology	7	Rapid Sample Preparation of Cancer Tissue Microarray Sections and FFPE Blocks for Clinical Analysis	Steven	Williams	Yes	No
P12.C31	09. Technological Advancements in Proteomics - Methodology	7	Automated Solid-Phase Extraction Methods for High-Throughput Proteomic Sample Preparation	Erin	Humphries	No	No
P12.C32	09. Technological Advancements in Proteomics - Methodology	7	Targeted Analysis of Protein Biomarkers in Biological Fluids by on-Line Aptamer-Affinity Solid- Phase Extraction Capillary Electrophoresis-Mass Spectrometry	Roger	Pero-Gascon	Yes	Νο
P12.C34	09. Technological Advancements in Proteomics - Methodology	7	Using of SILAC Technique for Studying Therapy-Induced Cell Communication in Ovarian Cancer Cells	Polina	Shnaider	No	No

P12.C36	09. Technological Advancements in Proteomics - Methodology	7	Glycoprotein Characterization Through Sensitive Analysis Of Glycopeptides By On-line Solid- phase Extraction Capillary Electrophoresis-Mass Spectrometry	Estela	Giménez	Yes	No
P12.C38	09. Technological Advancements in Proteomics - Methodology	7	Quantitative Proteomics Identifies Redox Switches That Regulate Fetal and Adult Hematopoiesis	Kristyna	Pimkova	Yes	No
P12.C39	09. Technological Advancements in Proteomics - Methodology	7	Development of Immunoaffinity- Selected Reaction Monitoring Assays for the Differential Quantification of Human Endogenous Retrovirus Proteins	Delaram	Dara	Yes	No
P12.C40	09. Technological Advancements in Proteomics - Methodology	7	Development of a Peptidome Analysis Method for Submilligram Brain Tissue	Yoshio	Kodera	Νο	No
P12.C42	09. Technological Advancements in Proteomics - Methodology	7	Comprehensive Proteomic Characterization of the Intra- And Extracellular Adaptations in Response to Oxidative Stress by OxSWATH	Sandra	Anjo	Νο	No
P12.C44	09. Technological Advancements in Proteomics - Methodology	7	Automated, Parallel Protein Extraction for Analysis of Low Input FFPE, Fresh Tissue and Cells Clinical Samples with Adaptive Focused Acoustics	Nicolas	Autret	Yes	No
	09. Technological Advancements in Proteomics - Methodology	7	HTPS: A Proteomic High- Throughput Screen to Map Specificity, Cleavage Entropy, Allosteric Changes and Substrates of Proteases	Federico	Uliana	Νο	No
P12.C47	09. Technological Advancements in Proteomics - Methodology	7	Mapping Protein Complexes for Unraveling the Hidden Proteome in Ovarian Cancer.	Diego Fernando	Garcia Del Rio	Yes	No

P12.C48	09. Technological Advancements in Proteomics - Methodology	7	Developing a Targeted Mass Spectrometry Workflow for Investigating the Tear Proteome from Healthy Volunteers	Maggy	Lépine	Yes	No
P12.C49	09. Technological Advancements in Proteomics - Methodology	7	Phosphoproteomic Workflow Optimization for the Analysis of FFPE Tissue Sections	Gábor	Tóth	No	No
P12.C50	09. Technological Advancements in Proteomics - Methodology	7	Comparison of In-Solution and S- TrapTM Based Sample Preparation for Tear Proteomics Study	Sung-hei Jimmy	Tse	No	Yes
P12.C51	09. Technological Advancements in Proteomics - Methodology	7	DeGlyPHER: An Ultrasensitive Method for Analysis of Viral Spike N-Glycoforms	Sabyasachi	Baboo	Νο	Yes
P13.02	13. Other	8	Identifying Disease-Induced Interactome Changes in the Honey Bee Midgut	Mopelola	Akinlaja	Yes	No
P13.03	13. Other	8	Molecular Weight-Based Proteome Fractionation by Stepwise Organic Solvent Precipitation	Venus	Baghalabadi	Yes	No
P13.04	13. Other	8	Conservation and Conditional Regulation of Protein Ubiquitination	Inigo	Barrio- Hernandez	Yes	No
P13.05	13. Other	8	Proteome Analysis Reveals Pathways of Corticoid- And Shape Constraint-Induced Transdifferentiation of HepaRG Cells	Charlotte	Brun	Yes	No
P13.06	13. Other	8	Cancer Stem Cell Marker DCLK1 Reprograms Small Extracellular Vesicles toward Migratory Phenotype in Gastric Cancer Cells	Annalisa	Carli	Νο	Yes

	13. Other	8	Quantitative Phosphoproteomics Reveals Ectopic ATP Synthase on Mesenchymal Stem Cells to Promote Tumor Progression via ERK/c-Fos Pathway Activation	Yi-Wen	Chang	Νο	Yes
P13.09	13. Other	8	NanoLC-nESI/MS/MS Analysis of Malondialdehyde-Induced Post- Translational Modifications in Breast Cancer Patients	Hauh-Jyun	Chen	Νο	Yes
P13.10	13. Other	8	A Virus-Host Protein Interactome Comparison of Differentially Pathogenic Arenaviruses	Bahne	Christiansen	Yes	No
P13.11	13. Other	8	New Proteomics Insights in the Characterization of FACs-Sorted Leukocyte-Derived Extracellular Vesicles as "Liquid Biopsy" of Immune Response	Maria Concetta	Cufaro	Yes	No
P13.15	13. Other	8	The Effects of Testosterone Replacement in a Pharmacologically Induced Hypogonadism Cohort: A Controlled Study with Healthy Young Males	Jéssica	Guedes	Yes	Νο
P13.16	13. Other	8	SpatialOMx on Intracellular Bacteria Reveals Metabolic and Proteomic Phenotypes In-situ	Corinna	Henkel	Yes	No
P13.19	13. Other	8	Profiling the Human Phosphoproteome to Estimate the True Extent of Protein Phosphorylation	Anton	Kalyuzhnyy	Yes	No
P13.20	13. Other	8	Phospho-proteomic Analysis of Microbe-Associated Molecular Patterns (MAMPs) Signalling in Food Security	Jianan	Lu	Yes	No
P13.21	13. Other	8	Towards Nanopore based Single- Molecule Bottom-Up Proteomics	Florian	Lucas	Yes	No

P13.22	13. Other	8	Representing Proteins and Peptides with Variational Feature Information in Graphs using ProtGraph	Dominik	Lux	Yes	No
P13.23	13. Other	8	Unveiling New Proteoforms of the Industrial Workhorse Corynebacterium Glutamicum through Top-down Proteomics	Reynaldo	Magalhães Melo	Yes	No
P13.25	13. Other	8	Identification of Interaction Partners of Calcitonin Receptor-like Receptor in Primary Human Dermal Lymphatic Endothelial Cells.		Manolis	Yes	No
P13.27	13. Other	8	Use of Proteomics to Study the Antifungal Effect of Metformin on C. albicans	Gloria	Molero	Yes	No
P13.28	13. Other	8	Toward Better Pre-clinical Sarcoma Model Using Decellularized Extracellular Matrix	Takuya	Ono	No	Yes
P13.30	13. Other	8	1DE Gel-Concentration Procedure for LC-MS/MS Analysis of Sds- Extracts of Human Chorionic Villus	Natalia	Petushkova	Yes	No
P13.31	13. Other	8	Characterization of Biological and Metabolic Responses to PH Changes in Staphylococcus Epidermidis	Susana	Santos	Yes	No
P13.32	13. Other	8	Proteomic analysis of mouse hearts treated with rattlesnake venom revealed modulation of proteins associated with mitochondria and cardiomyopathies	Wellington da Silva	Santos	Yes	Νο
P13.33	13. Other	8	Proteomic Analysis to Identify Candidate Biomarkers Associated with Skin Co-exposure to Ultraviolet Radiations and Benzo[A]Pyrene	Michel	Seve	Yes	No

P13.34	13. Other	8	High-throughput Lipidomics using Ion-mobility enhanced DDA and DIA Mass Spectrometry	Premy	Shanthamoorth y	Νο	Yes
P13.35	13. Other	8	Establishment and Characterization of a Novel Cell Line, NCC-MPNST6 C1, Of Malignant Peripheral Nerve Sheath Tumor		Sin	No	Yes
P13.36	13. Other	8	Developing a Pipeline for Isoform- Level Multi-Omics Data Analysis	Manika	Singh	No	Yes
P13.37	13. Other	8	Metabolomic Analysis of Amniotic Fluid Samples Infected by Zika Virus: Microcephalic versus Non- microcephalic Fetuses	Patricia	Sosa Acosta	Yes	Νο
P13.38	13. Other	8	GSH Mediated Alleviation of AAL Induced Stress in Plants- A Proteomic Approach in Solving the Cryptex of Plant Stress Signaling	Asma	Sultana	Yes	No
P13.39	13. Other	8	Dried Blood Spot as a Biomarker Source: A Bridge between Proteins and Metabolites in the Omics Era	Silvia	Valentinuzzi	Yes	No
P13.40	13. Other	8	The Metaproteomics Initiative: Coordinating International Efforts for Propelling the Functional Characterization of Microbiomes	Tim	Van Den Bossche	Yes	Yes
P13.42	13. Other	8	Glycoproteomic Study of Saccharomyces Cerevisiae Yeast Cell Wall Mannoproteins Reveals a Dynamic Molecular Change Depending on Culture Strategy and Conditions	Marie	Yammine	Νο	Yes
C.P.01	14. Corporate Posters	8	Precision Pathology: Mass Spectrometry Proteomics for Early Cancer Detection in Esophageal Disease	Joe	Abdo	Yes	Yes

C.P02	14. Corporate Posters	8	IonOpticks packed emitter columns. Your data is only as good as your chromatography	Jarrod	Sandow	Yes	Yes
C.P.03	14. Corporate Posters	8	Improving Nano-LC-MS/MS Data Quality Using a Trap-and-Elute Methodology	Phenomenex		Yes	Yes
C.P.04	14. Corporate Posters	8	Leveraging the Power of a Core- Shell Particle to Improve Micro and Nano Flow Separations	Phenomenex		Yes	Yes
C.P.05	14. Corporate Posters	8	Release the Power of Precise Proteomics	Susan	Mockus	Yes	Yes
C.P.06	14. Corporate Posters	8	Plasma protein signatures of multi- organ disease states as predictors of COVID-19 outcome severity	Clare	Paterson	Yes	Yes
C.P.07	14. Corporate Posters	8	Progress Towards A Proteomic Surrogate Endpoint for Cardiovascular Outcomes	Steve	Williams	Yes	Yes
C.P.08	14. Corporate Posters	8	A Standardized Separation Tool for Clinical Omics	Dorte	Bekker-Jensen	Yes	Yes
C.P.10	14. Corporate Posters	8	Publish with Expert Review of Prote	James	Crosby	Yes	Yes